首页 行业资讯 政策法规 产业市场 节能技术 能源信息 宏观环境 会议会展 活动图库 资料下载 焦点专题 智囊团 企业库
节能技术  中国节能产业网 >> 节能技术 >> 技术前沿 >> 正文
循环流化床锅炉脱硝技术改造与运行分析
来源:中国节能产业网 时间:2016-3-25 16:38:56 用手机浏览

 1 前言

  某大型化工公司热电厂配置2台75t/h 、1台130t/h、1台2 4 0 t/ h循环流化床锅炉,1台1 2MW汽轮发电机组,为全公司数套化工生产装置供3种不同规格的蒸汽和部分电力。其中2台75t/ h、1台24 0t/ h锅炉原始排放NOx浓度在20 0~3 50mg/Nm3(干态,6%氧气),1台130t/ h锅炉在现有的原始排放NOx浓度500~600mg/Nm3(干态,6%氧气)。按照《火电厂大气污染物排放标准》(GB13223-2011)规定:自2014年7月1日起,现有火力发电锅炉及燃气轮机组,现有循环流化床火力发电锅炉NOx排放值应控制在200mg/Nm3以内。因此进行锅炉脱硝技术应用研究,选择合适的脱硝技术实施改造已迫在眉睫。

 2 锅炉烟气脱硝及氨水制备技术路线的选择

  2.1 锅炉烟气脱硝技术路线的选择

在锅炉脱硝技术的选择上,通过对主要烟气脱硝工艺技术进行分析、比较、研究,根据不同的脱硝工艺技术特点,结合循环流化床锅炉NOx排放的具体情况,确定采用适合循环流化床锅炉的SNCR脱硝技术。SNCR脱硝工艺技术原理是在炉膛或烟道合适温度(850~1000℃)的位置喷入氨基还原剂(或尿素),无需催化剂,利用还原剂释放出的N H 3将烟气中的NOx还原为无害的N 2和H 2O。因循环流化床锅炉炉膛温度较低,在850~9 00℃之间,燃烧生成的氮氧化物主要是燃料氮氧化物,一般在300mg/Nm3左右。循环流化床锅炉采用SNCR脱硝技术即可获得70%以上的脱硝效率,满足NOx实际排放浓度低于100mg/Nm3的排放要求,且SNCR技术对炉内工况基本无影响,并具有投资小,运行成本低特点,非常适用于循环流化床锅炉。

 2.2 氨水制备技术路线的选择

  SNCR脱硝技术所用的还原剂一般为液氨、氨水和尿素等,在脱硝还原剂的选择上,综合考虑还原剂的储存条件、储存方式、制备过程中操作与控制、成本等因素,结合公司现有液氨储存系统和管理经验,及液氨稀释技术的发展情况,确定脱硝剂使用20%浓度左右的氨水,并采用以超级吸氨器为主体组成的液氨稀释系统来制备。

 2.2.1 传统液氨制备氨水工艺技术

  由于液氨与水生成氨水是一个放热过程,放出的热量会使液氨气化,要产生液击现象,因此传统的液氨制氨水工艺是先将液氨气化,然后用强化器循环吸收制为氨水。国内大部分工业氨水生产装置都是采用排管式换热器,这种装置不能一次性制备出合格氨水,需要2台30kW左右的氨水泵,两个大的氨水制备贮槽及大量的冷却水,不断进行循环吸收,历时2h才能制备出合格氨水。其特点为:生产出合格产品需要时间长、电耗高、产量低、设备占地面积大,生产环境差。也有企业将排管式换热器改为液氨蒸发器石墨降膜吸收塔,较之排管式换热器有一定的改良,环境要好一点,但能耗大、冷却水用量大、设备多,生产强度受水温影响较大。

  一部分生产量较少的装置,采用多个可承压贮槽串联吸收液氨,各贮槽需要采用阶梯型布置或槽之间串氨水泵,通入液氨,再进行静置降温后使用。还有一部分氨水用量很少的氨水用户,采用的是非常原始的方法,就是用水淋方式将液氨汽化,再直接通入软水中或去离子水中吸收,该方法氨的损失较大。

以上传统液氨制备氨水的工艺,或因为受温度的限制,生产设备多、生产周期长且要占用相当大的场地,设备故障率相对较很高,或系统相对较为简单,但氨损失均相当严重,生产现场气味很大,操作工人的身体易受到伤害。

 2.2.2 以超级吸氨器为主体组成的液氨稀释系统技术

  以超级吸氨器为主体组成的液氨稀释系统,其生产原理为:软化水、液氨按比例进入超级吸氨器,直接不循环吸收得到所需浓度的工业氨水。该系统不再需要循环制备增浓,单程即可制备浓度高达30%的氨水,可与SNCR脱硝主体工程的氨水输送系统统一整体布置。

  超级吸氨器是一种既环保又节能的生产设备,其特点为:①混合的过程与移热的过程同时进行,设备紧凑,体系温度稳定,氨水浓度控制灵活,不会出现超温超压现象,设备运行安全。②超级吸氨器内部结构为板式换热器,运行安全可靠。③占地面积少,主体为1个长、宽不到1m,高2m左右的箱体。

 3 液氨稀释系统技术方案

  3.1 液氨稀释系统规模及性能指标的确定

  4台锅炉采用SNCR脱硝技术实现达标排放,则所需20%的氨水用量为800kg/h,考虑设计余量和运行方式的灵活选择,确定了液氨稀释系统的处理能力为对350kg/h的液氨进行稀释,氨水生产能力为1.75t/h,液氨稀释后的氨水浓度为2 0%,浓度波动范围为18%~22%。

 3.2 液氨稀释系统工艺流程优化设计

  自化学水装置外供脱盐水母管引出以DN32的管线作为液氨稀释用水,经调节阀、流量计控制流量送入超级吸氨器,液氨取自热电装置现有锅炉给水加药系统液氨管线,通过调节液氨调节阀减压后的压力间接控制液氨流量进入超级吸氨器,与脱盐水在超级吸氨器内混配为所需浓度的工业氨水。配置好的氨水进入锅炉烟气脱硝主体工程的氨水储槽,通过氨水输送系统供锅炉脱硝使用。生产过程中产生的由液氨带来的少量不凝性气体夹带氨气从氨水贮槽中排出,进入尾气净化器由少量脱盐水净化回收其中的氨气后排入大气排放。净化用脱盐水来自锅炉脱硝主体工程稀释水泵出口管的分流支管。

 4 实施中的改进措施及运行效果分析

  以超级吸氨器为主体组成的液氨稀释系统改造周期为两周,主要包括土建、设备安装、调试、投料试运行。在试运行过程中结合现场条件,进行了如下改进及运行分析:

  (1)在循环水进水管道上加设管道泵,以确保循环冷却水的流量,控制循环水出水温度在45℃以下,氨水温度在25℃以下,以防超级吸氨器内因超温结垢。

  (2)氨水浓度显示由密度仪取值及氨水温度取值,通过氨水密度表对应显示。在调试过程中发现在线氨水浓度与人工分析成品氨水浓度相差较大,在线氨水浓度为10%~12%,而人工分析氨水则为18%~2 0%,经过多次分析对比,并进行密度仪、氨水温度表的校对,以及对氨水密度表调整校核,实现了在线氨水浓度与人工分析氨水浓度差别稳定在2%。

  (3)氨水出口阀须保持常开,氨水出口到氨水储罐及尾吸器、排气口要保持畅通,防止系统憋压,损坏设备。

  (4)发生任何异常现象,首先关闭液氨气动球阀、液氨调节阀,10s后关闭脱盐水。

  (5)运行过程中密切观察脱盐水、循环水运行情况,包括流量、压力、温度,发现异常要立即关闭液氨阀门,待问题处理后再开机。

 5 结束语

  超级吸氨器在锅炉脱硝改造中的成功应用,解决了传统氨水制备系统不能快速制备不同浓度氨水、设备多、系统复杂、运行操作繁琐、占地面积大等的问题。另外,超级吸氨器是一个能效高、反应高效与换热高效的设备,出口氨水温度在不超负荷工作时可比冷却水温度低10~15℃,因此夏天氨水温度可低于冷却水温度10℃以上,也就没有在浓度高时的不断蒸发损耗或无法制备高浓度氨水的问题了。并且配套的尾气吸收器,由于液气比大,可将装置唯一排放口气体中的氨完全吸收干净,经尾器吸收后的水再作为锅炉脱硝主体工程的稀释水或超级吸氨器的吸收剂,从而无外排之虑,也就不存在传统工艺的贮槽吞吐氨损失了。目前超级吸氨器单机每小时可吸收转化0.38~10t/h(液氨量),因此在化工、锅炉脱硫、脱硝改造等领域内有很好的应用前景。


分享到:
相关文章 iTAG:
引入新风系统 绿色建筑技术让居住更美好
最全的热水采暖系统常见故障的排除
试论供暖系统循环水泵选配中应注意的节能技术问题及对
离心泵四种主流节能技术分析
中国工业建筑电气节能技术设计的要点
电器节能技术在水泥行业的应用
新型干法水泥生产技术优化与节能技术的应用
国家重点推广的电机节能先进技术目录(第一批)
频道推荐
服务中心
微信公众号

CESI
关于本站
版权声明
广告投放
网站帮助
联系我们
网站服务
会员服务
最新项目
资金服务
园区招商
展会合作
中国节能产业网是以互联网+节能为核心构建的线上线下相结合的一站式节能服务平台。
©2007-2016 CHINA-ESI.COM
鄂ICP备16002099号
节能QQ群:39847109
顶部客服微信二维码底部
扫描二维码关注官方公众微信